

MASTER CHIMIE ET SCIENCES DU VIVANT

PARCOURS CHIMIE ENVIRONNEMENT MARIN

Semestre 9

Méthodes spectrométriques avancées

Présentation

UE, principalement pratique, permettant de découvrir et à utiliser les outils de mesures en géochimie. Cette UE, concentrée sur deux semaines, commence par une série de cours magistraux, visant à rappeler les tenants et aboutissants des analyses en géosciences et en environnement. Suivent une série de TP en laboratoires (salle blanche, spectromètres de masse et spectromètre optique) visant à l'analyse quantitatives de teneurs en éléments majeurs, éléments en traces et isotopes dans l'eau et dans les roches

4 crédits ECTS

Volume horaire

Cours Magistral : 12h Travaux Pratiques : 24h

Objectifs

Se familiariser avec les outils de pointe en géochimie, afin d'être opérationnel sur ces instruments lors d'un stage ou d'une embauche dans le monde industriel ou celui de la recherche.

Pré-requis nécessaires

Chimie analytique et bases de géochimie

Compétences visées

- > Induire un projet pouvant mobiliser des compétences pluridisciplinaires dans le domaine des sciences de l'environnement marin
- > Exploiter avec des approches quantitatives des données expérimentales en utilisant des outils de gestion de la donnée, de représentation numérique et de modélisation
- > Maitriser la spécificité des techniques analytiques innovantes dédiées à l'environnement
- > Prendre des responsabilités au sein d'une équipe pour assurer une efficacité dans les pratiques de terrain et de laboratoire

Descriptif

Après une formation rapide, les étudiants sont directement mis en situations affin de réaliser (encadrés par des enseignants-chercheurs et des ingénieurs du laboratoire Géo-Ocean, UMR CNRS-UBO-Ifremer 6538) l'échantillonnage, l'analyse, le traitement de données et la valorisation des résultats, pour l'analyse d'échantillons d'eau et de roches. A la suite de cette formation ils seront en mesure de

- > Comprendre le fonctionnement d'un spectromètre de masse
- > Savoir préparer des échantillons naturels solides et liquides pour des analyses de concentrations ou de compositions isotopiques en conditions ultra-propres (salle blanche).
 - > Savoir manipuler un spectromètre de masse à source plasma (ICP-MS).
- > Savoir manipuler un spectromètre optiques à source plasma (ICP-OES).
- > Savoir utiliser un spectromètre de masse à source thermo-ionique (TIMS).
- > Convertir les données brutes en données traitées et leur associer des incertitudes.
- > Rédiger un rapport technique.

Modalités de contrôle des connaissances

Session 1 ou session unique - Contrôle de connaissances

Nature de l'enseignementModalitéNatureDurée (min.)CoefficientRemarquesUECTEcrit - rapport1

Session 2 : Contrôle de connaissances

Nature de l'enseignement Modalité Nature Durée (min.) Coefficient Remarques

CT Ecrit - rapport 1

Pour plus d'informations : http://formations.univ-brest.fr