

MASTER PHYSIQUE

PARCOURS PHYSIQUE OCÉAN ET CLIMAT

semestre 9 Physique POC

Spécialité côtière

18 crédits ECTS

4 crédits ECTS

Volume horaire

Travaux Dirigés : 25h Cours Magistral : 5h

Dynamique côtière

Présentation

L'enseignement a pour but d'introduire la diversité des processus responsables de la dynamique en milieu côtier (du littoral jusqu'aux limites du plateau continental). Il vise à une description des principaux mécanismes et équilibre de la dynamique côtière.

Les cours sont assurés par des chercheurs impliqués dans cette problématique.

This course describes the main processes and equilibrium met in coastal dynamics.

« course taught in English »

Objectifs

L'objectif est que les étudiants connaissent la diversité des processus qui régissent la dynamique en milieu côtier (du littoral jusqu'aux limites du plateau continental)

The objective for students is to know the diversity of processes that drive the dynamics in coastal domain (from the coast to the shelf break)

Pré-requis nécessaires

Mécanique des fluides géophysiques / geophysical fluid dynamics Océanographie physique descriptive / descriptive physical oceanography

Compétences visées

Identifier les informations dans la littérature scientifique et extraire le questionnement nouveau - récolter des données terrain ou en laboratoire et connaître les méthodologies et instruments de mesures - avoir une culture des ordres de grandeur du système océan-atmosphère-climat pour qualifier ou analyser des observations - développer des calculs nouveaux a partir de calculs existants pour résoudre un problème original

Connaître et savoir utiliser les codes d'analyses de données et de simulation numérique et éventuellement des outils des sciences de la donnée pour aborder des problèmes complexes

- -mettre en œuvre du calcul intensif
- -maîtriser les limites et champs d'application des outils numériques

Caractériser les interactions entre les parties du système telles qu'observées (par corrélation déterministe ou par analyse de régression) ; appliquer une analyse holistique si besoin ; puis quantifier les éléments individuels et structurels du système

Descriptif

Cours 1	Introduction à la dynamique côtière
Cours 2	Marée: marée statique, potentiel générateur, marée dynamique, interaction non-linéaire, génération d'harmonique, spectre de marée côtier
Travaux pratiques 1	Marée : prédictions de marée dans différents ports par la formule harmonique, calcul des surcotes.
Cours 3	Fronts : Structure frontale (surface et fond), fronts de marée, structure et équilibre hydrologique et dynamique, circulation associée, équilibre du vent thermique, instabilité de courant
Cours 4	Forçage vent: Réponses aux forçages météorologiques: en fluide homogène, en fluide stratifié, vent le long des côtes (upwelling, downwelling)
Travaux dirigés 1	upwelling
Travaux dirigés 2	amphidromie
cours 6	Turbulence : Couches limites de fond – Couches limites de surface : écoulements contrôlés par la friction au fond, pompage d'Ekman, influence des vagues sur les couches limite. Dissipation,

	origine de cisaillement, production de turbulence. Origine de la flottabilité – dissipation de la turbulence
Cours 7	Ondes : Système dynamique, propagation, signature, dissipation, relation de dispersion ; Effets Topographiques et ondes piégées à la côte : ondes de vorticité topographiques
Cours 8	Panaches: rivière versus marée coin salée, effet de la flottabilité sur le mélange, devenir des panaches fluviaux sur le plateau

Lecture 1	Introduction to coastal dynamics
Lecture 2	Tide : static tide, dynamic tide, non-linear interactions, harmonic generation, coastal tide spectrum
Practical 1	Tide: Tide predictions for different harbours. Surges
Lecture 3	Fronts : Frontal s tructure (surface and bottom), tidal fronts, structure and hydrological and dynamical equilibrium, associated circulation, thermal wind equilibrium, current instabilities
Lecture 4	Wind forcing: Responses to meteorological forcing: in homogeneous fluid, in stratified fluid, wind along the coasts (upwelling, downwelling)
tutorial 1	upwelling
Tutorial 2	amphidromy
Lecture 6	Turbulence: bottom layer – surface layer: flow controlled by bottom friction, Ekman pumping, wave influence on limit layer. Dissipation, origin of shear stress, production of turbulence. Origin of buoyancy – turbulence dissipation
Lecture 7	waves: dynamical system, propagation, signature, dissipation, relation of dispersion; Topographic effects and coastal trapped waves: waves of topographic vorticity
Lecture 8	Plumes: river versus tide, buoyancy effect on mixing, becoming of river plumes on shelf

Bibliographie

Cushman-Roisin Benoit and Beckers Jean-Marie, 2010: Introduction to geophysical fluid dynamics: Physical and Numerical Aspects-academic Press. http://engineering.dartmouth.edu/~cushman/books/GFD.html

Stewart Robert H., 2008 : Introduction To Physical Oceanography. Department of Oceanography, Texas A & M University. http://oceanworld.tamu.edu/ocean410/ocng410_text_book.html

Modalités de contrôle des connaissances

Session 1 ou session unique - Contrôle de connaissances

Nature de l'enseignement	Modalité	Nature	Durée (min.)	Coefficient	Remarques
	CC	Autre nature		50%	
	СТ	Ecrit - devoir surveillé	60	50%	

Session 2 : Contrôle de connaissances

Nature de l'enseignement Modalité

Autre modalité

Nature Autre nature Durée (min.) Coefficient Remarques

oral commun de 40 mn pour toutes les matières

4 crédits ECTS

Volume horaire

Cours Magistral: 20h Travaux Dirigés: 10h

Dynamique sédimentaire (ENSTA Bretagne)

Présentation

Ce cours décrit les principaux forçages hydrodynamiques contrôlant la dynamique sédimentaire côtière et estuarienne. Il décrit le comportement des sédiments cohésifs et non cohésifs, avec une attention particulière sur l'érosion, le dépôt, les processus de transport.

This course describes the main hydrodynamic forcing driving coastal and estuarine sediment dynamics. It describes the behaviour of both non-cohesive and cohesive sediments, with a focus on erosion, deposition and transport processes.

« course taught in English »

Objectifs

Introduction aux éléments théoriques de la dynamique des sédiments, qu'ils soient sur le fond (charriage...) ou en suspension dans l'eau, et apprentissage des formulations d'ingénierie qui permettent d'en rendre compte. Stratégies de modélisation de la dynamique sédimentaire, et des couplages morphodynamiques.

Introduction aux éléments théoriques de la dynamique des sédiments, qu'ils soient sur le fond (charriage...) ou en suspension dans l'eau.

Introduction to theorical elements of sediment dynamics, on bottom (bedload) as well as suspended load.

Stratégies de modélisation de la dynamique sédimentaire, et des couplages morphodynamiques.

Modelling strategy of sediment dynamics and morphodynamics coupling.

Pré-requis nécessaires

Mécanique des fluides à surface libre et/ou mécanique des fluides géophysiques

Compétences visées

Connaissance des processus générateurs des mouvements de sédiment en milieu côtier, et des méthodes d'évaluation de ces mouvements ; caractérisation des structures géomorphologiques qui en résultent

Identifier les informations dans la littérature scientifique et extraire le questionnement nouveau - récolter des données terrain ou en laboratoire et connaître les méthodologies et instruments de mesures - avoir une culture des ordres de grandeur du système océan-atmosphère-climat pour qualifier ou analyser des observations - développer des calculs nouveaux a partir de calculs existants pour résoudre un problème original

Connaître et savoir utiliser les codes d'analyses de données et de simulation numérique et éventuellement des outils des sciences de la donnée pour aborder des problèmes complexes

- -mettre en œuvre du calcul intensif
- -maîtriser les limites et champs d'application des outils numériques

Caractériser les interactions entre les parties du système telles qu'observées (par corrélation déterministe ou par analyse de régression) ; appliquer une analyse holistique si besoin ; puis quantifier les éléments individuels et structurels du système

Descriptif

Cours 1	Introduction à la dynamique sédimentaire
Cours 2	Approche géographie physique
Cours 3	Forçage hydrodynamique: contraintes de cisaillement sur le fond sous l'effet d'un courant et/ou des vagues.
Travaux dirigés 1	Forçage hydrodynamique : Implémenter l'équation du moment dans un modèle 1DV
Cours 4	Sédiments cohésifs : dépôt ; consolidation ; érosion

Travaux dirigés 2	Sédiments en suspension : Implémenter l'équation d'advection-diffusion sans les processus d'érosion/dépôt dans un modèle 1DV
Cours 5	Sédiments non cohésifs: seuil de mouvement, dépôt, charriage et transport en suspension, comportement hétérométrique des sédiments
cours 6	Structures géomorphologiques
Travaux dirigés 3	Dynamique sédimentaire : Ajouter les processus d'érosion/ dépôt au modèle 1DV
Cours 7	Application et synthèse

Lecture 1	Sediment dynamics introduction		
Lecture 2	Physical geographic approach		
Lecture 3	Hydrodynamic forcing : current-induced bottom shear stress, skin roughness ; wave-induced bottom shear stress		
Tutorial 1	Hydrodynamic forcing: Implementing the momentum equation in a 1DV model.		
Lecture 4	Cohesive sediments : deposition ; consolidation ; erosion		
Tutorial 2	Suspended sediments: Implementing the advection-diffusion equation without erosion/deposition processes in the 1DV model.		
Lecture 5	Non-cohesive sediments: threshold of motion, settling, bedload and suspended load, heterometric sediment behaviour		

Lecture 6	bedforms
Tutorial 3 (Sediment dynamics: Adding erosion/deposition processes to the 1DV model.
Lecture 7	Application and synthesis

Modalités de contrôle des connaissances

Session 1 ou session unique - Contrôle de connaissances

Nature de l'enseignement Modalité Durée (min.) Coefficient Remarques Nature 100%

Autre nature

Session 2 : Contrôle de connaissances

Nature de l'enseignement Modalité Nature Durée (min.) Coefficient Remarques

Report de notes 100% report de note session 1 Autre nature

4 crédits ECTS

Volume horaire
Cours Magistral: 12h

Travaux Dirigés: 24h

Modélisation numérique côtière 1 (ENSTA Bretagne)

Présentation

Ce cours a pour but la compréhension des équations mises en jeu dans un modèle océanique côtier.

This course aims to provide the knowledge of the equations involved into a coastal oceanic model. « course taught in English »

Objectifs

L'objectif est que les étudiants connaissent la diversité des processus à prendre en compte dans un modèle océanique côtier, de les mettre en équation et de les formaliser dans un code numérique.

The objective for students is to know the diversity of processes that we have to take into account in a cosatal oceanic model, to put them into equation and to formalize them into a numerical code.

Pré-requis nécessaires

Mécanique des fluides géophysiques / geophysical fluid dynamics Océanographie physique descriptive / descriptive physical oceanography Mathématiques appliquées / applied mathematics.

Compétences visées

Travailler en groupe sur des situations transversales ; développer les liens entre compétences thématiques pour les valoriser dans le champ professionnel ; Utiliser les projets et les stages pour développer des approches nouvelles dans des sous-domaines de pointe de la physique marine

Préparer, discuter et mettre en place des projets - monter un réseau de coopérations internationales avec complémentarité des compétences - assurer une planification des moyens et des ressources - programmer des étapes, des solutions alternatives, des phases de discussion et d'analyse critique dans le cours du projet

Identifier les outils et ressources numériques pour le problem solving et savoir valider les résultats ; identifier les outils numériques dans l'obtention d'information et dans la diffusion de connaissances

Connaître et savoir utiliser les codes d'analyses de données et de simulation numérique et éventuellement des outils des sciences de la donnée pour aborder des problèmes complexes

Mettre en œuvre du calcul intensif.

Maîtriser les limites et champs d'application des outils numériques

Construire les algorithmes de modélisation et d'analyse en physique marine, en assurant un équilibre entre l'optimisation de performance et l'applicabilité générale ; choisir les schémas numériques et les méthodes de solution après une analyse du contexte spécifique.

Descriptif

Cours 1	Rappel Construction de schémas aux différences finies Consistance, stabilité et convergence Analyse de Von Neumann Schémas temporels
Cours 2	Equations Navier-Stokes Principes physiques : Conservation de la masse, Conservation du moment Formulation en milieu tournant : Force de Coriolis Approximation de Boussinesq et hydrostatique : formulation des équations primitives.
Cours 3	Equations en moyenne de Reynolds Reynolds averaged Navier Stokes equations Fermeture turbulente
TP1	Processus de diffusion

	Schémas numériques 1D vertical (Euler, Cranck Nicolson) Analyse de stabilité numérique, propriété spectrale de dissipation et dispersion
TP2	Ondes de gravité, couches d'Ekman, couche limite de fond (marée, vagues), entraînement par le vent
TP3	Advection
TP4	Réalisation d'un modèle numérique 2D d'onde d'inertie gravité

Lecture 1	Rappel
	Finite difference schemes
	Consistency, stability and convergence
	Analysis of Von Neumann
	Temporal schemes
Lecture 2	Navier-Stokes equations
	Physical principles : Mass and momentum conservation
	Expression in rotated framework: Coriolis acceleration
	Boussinesq and hydrostatic approximations : Primitive equations.

Lecture 3	Reynolds Averaged equations Reynolds averaged Primitive equations Concept of turbulence closure
Practical 1	Diffusion processes 1D vertical numerical scheme (Euler, Cranck Nicolson) Analysis of numerical stability, spectral propriety of dissipation and dispersion
Practical 2	Gravity waves, Ekman layer, bottom layer (tide, waves), wind drive
Practical 3	Advection
Practical 4	Realisation of 2D numerical model of inertia-gravity waves

Bibliographie

Cushman-Roisin B. and Beckers J-M, 2011. Introduction to geophysical fluid dynamics- Physical and numerical aspects (Second Edition), Elsevier, 828 pp.

Modalités de contrôle des connaissances

Session 1 ou session unique - Contrôle de connaissances

Nature de l'enseignement Modalité Nature Durée (min.) Coefficient Remarques
CC Autre nature 100%

Session 2 : Contrôle de connaissances

Nature de l'enseignementModalitéNatureDurée (min.)CoefficientRemarquesReport de notesAutre nature100%report de note session 1

Modélisation Numérique Côtière 2 (ENSTA Bretagne)

Présentation

Ce cours a pour but l'utilisation d'un modèle océanique côtier réaliste.

This course aims to use a realistic oastal oceanic model

« course taught in English »

3 crédits ECTS

Volume horaire

Travaux Dirigés: 24h

Objectifs

L'objectif est que les étudiants sachent paramétrer et analyser les résultats issus de simulations d'un modèle océanique côtier tendant vers le réalisme.

The objective for students is to parameterize and analyse results from simulations of almost realistic coastal oceanic model.

Pré-requis nécessaires

Mécanique des fluides géophysiques / geophysical fluid dynamics

Océanographie physique descriptive / descriptive physical oceanography

Mathématiques appliquées / Applied Mathematics

Modelisation océanique côtière 1 / Coastal oceanic model 1

Compétences visées

Travailler en groupe sur des situations transversales ; développer les liens entre compétences thématiques pour les valoriser dans le champ professionnel ; Utiliser les projets et les stages pour développer des approches nouvelles dans des sous domaines de pointe de la physique marine

Préparer, discuter et mettre en place des projets - monter un réseau de coopérations internationales avec complémentarité des compétences - assurer une planification des moyens et des ressources - programmer des étapes, des solutions alternatives, des phases de discussion et d'analyse critique dans le cours du projet

Identifier les outils et ressources numériques pour le problem solving et savoir valider les résultats ; identifier les outils numériques dans l'obtention d'information et dans la diffusion de connaissances

Acquérir des connaissances thématiques spécialisées en physique marine ; appliquer les théories et outils analytiques et numériques sur des problèmes thématiques puis transverses ; développer l'originalité par l'analyse critique des études antérieures

Maîtriser les limites et champs d'application des outils numériques

Construire les algorithmes de modélisation et d'analyse en physique marine, en assurant un équilibre entre l'optimisation de performance et l'applicabilité générale ; choisir les schémas numériques et les méthodes de solution après une analyse du contexte spécifique

Descriptif

TP1	propagation de marée
TP2	circulation rectifiée par le vent et surcote
TP3	couche limite de fond
TP4	dispersion de traceur dissout

Practical 1	Tide propagation
Practical 2	Wind driven circulation and surges
Practical 3	Bottom layer
Practical 4	Dissolved tracer dispersion

Bibliographie

www.opentelemac.org/index.php/presentation?id=17 www.open**telemac**.org/index.php/presentation?id=18 www.open**telemac**.org/

Modalités de contrôle des connaissances

Session 1 ou session unique - Contrôle de connaissances

Nature de l'enseignement Modalité Durée (min.) Coefficient Remarques 100%

Autre nature

Session 2 : Contrôle de connaissances

Nature de l'enseignement Modalité Durée (min.) Coefficient Nature Remarques 100%

Report de notes Autre nature report de note session 1

Vagues

Présentation

Ce cours a pour but la connaissance et l'utilisation des theories et modeles numeriques des vagues

Objectifs

Objectif Terminal	Cet enseignement vise à une connaissance des phénomènes physiques associés aux états de mer. Il prépare le futur professionnel et le chercheur à leur prise en compte et leur modélisation théorique et numérique.
Objectif Pédagogique	L'enseignement a pour but de faire comprendre les descriptions statistiques des états de mer, et les effets mécaniques qui leur sont associés (vitesses, dérives, flux de quantité de mouvement à l'interface air-mer.

3 crédits ECTS

Volume horaire

Cours Magistral : 5h Travaux Dirigés : 20h

Pré-requis nécessaires

Prérequis	M1 ou VAE ou équivalence
-----------	--------------------------

Compétences visées

Mobiliser des savoirs hautement spécialisés, dont certains sont à l'avant-garde du savoir dans un domaine de travail ou d'études comme base d'une pensée originale.

Résoudre des problèmes pour développer de nouveaux savoirs et de nouvelles procédures et intégrer les savoirs de différents domaines

Conduire une analyse réflexive et distanciée prenant en compte les enjeux, les problématiques et la complexité d'une situation ou question scientifique afin de proposer des solutions adaptées et/ou innovantes avec les outils appropriés

Analyser et resoudre un probleme de physique marine a partir d'informations fragmentaires ou de sources d'information dispersees ; identifier les processus physiques et les quantifier

Descriptif

Contenu de l'enseignement

Après une description des méthodes statistiques, le mouvement des vagues sera abordé par la théorie d'Airy qui est la solution des équations linéarisées du mouvement. Les propriétés de vitesse orbitale, dérive, flux d'énergie et de quantité de mouvement seront déduit des équations. La théorie sera ensuite généralisée à un état de mer aléatoire réaliste et confrontés aux observations. Les observations empiriques de croissance et variation des états de mer sont ensuite reliées à une généralisation de la théorie d'Airy : prise en compte de l'effet du vent, déferlement, évolution non-linéaire. Sur cette base, les méthodes pratiques de prévision des vagues seront décrites. On s'intéressera en particulier aux effets des états de mer sur le mélange à la surface de l'océan et les flux air-mer.

Les effets de propagation sur bathymétrie et courants variables et de dissipation par frottement seront décrits théoriquement et

empiriquement. Les conséquences en termes de courant littoral et surcote seront décrit. Ces phénomènes feront l'objet d'un travail de modélisation numérique réaliste d'une zone côtière, avec une validation par des mesures in situ et de télédétection.

Bibliographie

Ardhuin, F., 2021, Ocean waves in geosciences, http://dx.doi.org/10.13140/RG.2.2.16019.78888/9
Dean, R.G., Dalrymple, R. A., Water wave mechanics for engineers and scientists, World Scientific, 1991, 353 p. Holthuijsen, L., 2008. Waves in oceanic and coastal waters. Cambridge University Press, 387 p.