Analyse 1

Présentation

Propriétés de R : nombres rationnels, irrationnels, majorants, minorants, bornes sup et inf, existence du corps des nombres réels admise.

Suites numériques : limites, critères de convergence, théorème de Bolzano-Weierstrass, suites définies par récurrence.

Limites, continuité des fonctions d'une variable réelle, théorème des valeurs intermédiaires, fonction continue sur un intervalle fermé borné, théorème de la bijection réciproque.

Dérivabilité, dérivée d'une fonction réciproque, théorème de Rolle, théorème des accroissements finis, dérivée d'ordre supérieur.

Formules de Taylor avec reste de Taylor-Young, Lagrange, reste intégral.

Développements limités et applications.

Objectifs

Maîtrise des notions élémentaires d’analyse, de quelques démonstrations de base identifiées par l’équipe pédagogique (exigibles et demandées en examen/cc).